Cluster Tilting vs. Weak Cluster Tilting in Dynkin Type a Infinity
نویسنده
چکیده
This paper shows a new phenomenon in higher cluster tilting theory. For each positive integer d, we exhibit a triangulated category C with the following properties. On one hand, the d-cluster tilting subcategories of C have very simple mutation behaviour: Each indecomposable object has exactly d mutations. On the other hand, the weakly d-cluster tilting subcategories of C which lack functorial finiteness can have much more complicated mutation behaviour: For each 0 ≤ ` ≤ d − 1, we show a weakly d-cluster tilting subcategory T` which has an indecomposable object with precisely ` mutations. The category C is the algebraic triangulated category generated by a (d + 1)spherical object and can be thought of as a higher cluster category of Dynkin type A∞.
منابع مشابه
Cluster Structures for 2-calabi-yau Categories and Unipotent Groups
We investigate cluster tilting objects (and subcategories) in triangulated 2-Calabi-Yau categories and related categories. In particular we construct a new class of such categories related to preprojective algebras of non Dynkin quivers associated with elements in the Coxeter group. This class of 2-Calabi-Yau categories contains the cluster categories and the stable categories of preprojective ...
متن کاملEquivalences between cluster categories
Tilting theory in cluster categories of hereditary algebras has been developed in [BMRRT] and [BMR]. These results are generalized to cluster categories of hereditary abelian categories. Furthermore, for any tilting object T in a hereditary abelian category H, we verify that the tilting functor HomH(T,−) induces a triangle equivalence from the cluster category C(H) to the cluster category C(A),...
متن کاملTilting Theory and Cluster Combinatorics
We introduce a new category C, which we call the cluster category, obtained as a quotient of the bounded derived category D of the module category of a finite-dimensional hereditary algebra H over a field. We show that, in the simply-laced Dynkin case, C can be regarded as a natural model for the combinatorics of the corresponding Fomin–Zelevinsky cluster algebra. In this model, the tilting obj...
متن کاملTo my dearest parents and to
This thesis is concerned with higher cluster tilting objects in generalized higher cluster categories and tropical friezes associated with Dynkin diagrams. The generalized cluster category arising from a suitable 3-Calabi-Yau differential graded algebra was introduced by C. Amiot. It is Hom-finite, 2-Calabi-Yau and admits a canonical cluster-tilting object. In this thesis, we extend these resul...
متن کاملUniversal Derived Equivalences of Posets of Cluster Tilting Objects
We show that for two quivers without oriented cycles related by a BGP reflection, the posets of their cluster tilting objects are related by a simple combinatorial construction, which we call a flip-flop. We deduce that the posets of cluster tilting objects of derived equivalent path algebras of quivers without oriented cycles are universally derived equivalent. In particular, all Cambrian latt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012